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This paper deals with the problem of the steady-state hypersonic flow of an inviscid compressible gas past 
a wedge. Inside the wedge a magnetic field is excited in a direction perpendicular to the generator. The 
flow in the region of perturbation is investigated on the basis of the ordinary equations of magnetohydro- 
dynamics and Ohm's law, written for the case where the Hall effect is taken into account. The system ot 
equations obtained has been solved numerically on a computer by the method of finite differences. The 
results show that for the given problem the Hall effect intensifies the magnetohydrodynamic action of the 
magnetic field on the flow. M. D. Ladyzhenskii [1] has also studied hypersonic flow past bodies from inside 
which a magnetic field is excited. He has investigated the influence of a strong magnetic field on the flow 

for the case where the Hall effect is neglected. The object of the present study is to determine the impor- 
tance of the Hall effect. 

Suppose a wedge is exposed to the steady-state hypersonic flow of an inviscid compressible gas. Inside the wedge a 

magnetic field is excited, The field vector is perpendicular to the generator of the wedge and has a constant modulus H*. 

Electrical conduction in the undisturbed flow is neglected. In the region beyond the shock wave the ectuations of mag- 

netohydrodynamics hold true, and, since we are considering the case in which cot ~ 0. where co is the gyrofrequency of 

the electrons in the magnetic field, and r is the average t ime between electron-ion collisions, we shall take Ohm's law 
in the form [2]: 
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where a 0 is the conductivity in the absence of a magnetic field (assumed constant); I-I, E are the magnetic and electrk  
field vectors, respectively; c is the speed of light in a vacuum; V is the gas velocity; and j is the current density vector. 

We shall relate the velocity in the 

of the magnetic field to the quantity H*, 

%VooH*/c, the electric field intensity to 

flow PeeVe, and the space coordinates to 
tions of magnetohydrodynamics and Ohm 
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where V, H, p, and p are, respectively, 

in dimensionless form, and >c is the ratio 

region of perturbation to the velocity of the undisturbed flow V~o, the intensity 

the density to the density at infinity Poe, the current density to the quantity 
the quantity VooH*/c, the pressure to twice the velocity head in the undisturbed 
the length of the generator of the wedge L. In dimensionless variables the equa- 

's law may be written thus: 
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the velocity vector, magnetic field strength vector, density, and pressure, all 

of specific heats. 

(s) 

Equations (2) contain the dimensionless quantities q and R m. Their order of magnitude was estimated in [1]. Here 

we shall consider the cases R m ~ 1, q ~ l / s ,  where s = (z - 1)/(z + 1) is the ratio of the density in front of the shock 

w a v e .  

To equations (2) we must add the conditions at the shock wave and the boundary conditions at the body and at in- 

finity. In dimensionless variables, assuming that the Mach number at infinity is infinitely large, the conditions at the 

shock wave assume the form: 

z 4 - 1  •  2 sin 2[~, 92--  V2~----eos[~, V2~=  sin 2~, I I 2 =  tit (3) P 2 - - •  •  •  ' 

where the subscript 2 relates to the region beyond the shock wave, r and n are, respectively, unit vectors of the tangent 

and normal to the shock wave, and 8 is the local angle of incl inat ion of the discontinuity with respect to the direction of 

the velocity in the undisturbed flow. At the body we have the no-flow condition V n = 0. In the undisturbed flow the fol- 

lowing equations hold for the magnetic field: 
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d i v H  = O, r o t H =  O. 

Equations (2) and (3) constitute the complete system of equations of the problem. The shape of the shock wave is 
determined in the process of its solution. 

We project Eqs. (2) onto the axes of the Cartesian coordinate system x, y, z, which we shall select as follows: 
the origin is located at the nose of the wedge, the x axis is directed along the. generator, and the y axis at right angles 
to it. By virtue of the formulation of the problem, all the functions ifi question are functions only of x and y and do not 
depend on z. The components of V along the axes x, y, z will be denoted by u, v, and w, respectively. We then get: 

From Eqs. 
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(1t) we find that E z = 0, since it is assumed that there is no external electric field. 

From the equations of magnetohydrodynamics i t  follows that the equation 

div j = 0 is everywhere fulfilled or, in accordance with Gauss' theorem, 

I /~dE = 0 

where Z is some closed surface, and Jn is the current density component normal 

to the surface. Since in our problem nothing depends on z, we shall take as the 

surface Z a piece of the surface (the intersection of which with the plane z = 0 

is shown in Fig. 1) lying between the planes z = 0 and z = 1. E = Z 1 + X 2 + E s. 

Note that at the surface of the wedge Jn = O, as follows from the formula-  
tion of the problem. In front of the shock wave the gas is nonconducting, i . e . ,  

there are no currents from the shock wave; therefore we have, in turn: 

Y 

Fig. 1 
Thus, from the formulation of the problem it follows that no electric current 

flows in the direction of the x axis. 
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Assuming that  the pa ramete r  e = (~ - 1) / (~ + 1) is small ,  we shaI1 es t ima te  the quant i t ies  enter in~ into equat ions 

(4)-(11) for the case car ~ 1. By analogy with [1], we have:  

Further, 

x ~ t ,  y ~ e ,  u ~ t ,  v ~ e ,  9 ~ t / e  , 

Op I Ox ~ e ,  p = s i n  2 0,  h,~ = t -[- O (e) ,  /~ ~ t .  

from Eqs. (5), (8), (6), (9), and (10), (11)we have, respectively: 

h~ ~ e, ]'~ ~ t ,  h~ ~ e, l'u ~ e, w ~ t , 

E~ ~ 1, E~.-~ e, E~ = / (~) + ~q~ (U), / (x) ~ ~, q0 (y) ~ ~. 
(].~) 

All these estimates, obtained for the case an" ~ 1, are confirmed by the solution. 

Neglecting in Eqs. (4)-(11) terms of the .order of s in comparison with 1 and using (12), we obtain: 
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where Y = Y(x) is the equation of the shock wave. The last equation in system (14) is obtained from Eqs. (12), (13) and 

the equation for Jx of system (14). 

At the  shock wave f rom (3) we h a v e  

p o = s i n  ~0, P 2 = I / a ,  u 2 = c o s O  
for Y = Y ( ~ )  (Jh) 

v ~ = ( d Y  / d x )  c o s O - - e s i n O ,  w = - O  

where 0 is the half-angle  of the wedge. We shall go over to the new variables x and a determining ~ as follows: 

0__~_~ 9v,  0~ ~ p~, ~ ~ 0 (at the surface of the wedge), 
Ox -= O-y = 

Then from (14) we get 
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]'~ = t + o)2"~ 2 

System (16) describes the gas flow in the region of perturbation beyond the shock wave and determines the electric 

currents and the electric field in this region. We shall find the shape of the shock wave, From the continuity equation in 

the variables x and #J we have: 

q~ ! ~  ~ 1 7 6  = 0, v = - - u  -g~-r (1:) 
O~ �9 pu 

o 

From boundary conditions (15) we have: 

dY 
v~ = -~x c o s O - - e  s i n O .  (IS) 

Using the expression $ = -x  sin 0 - y cos O for the current function in the undisturbed flow. taking continuity at the shock 

wave into account, we get: 

~F = - - x s i n O - -  Y eosO. (iv) 
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From (18) and (19) we find: 

d~  
v~ = d~ (1 + e) sin 0 .  (~o) 

Substituting (20) in (17), we find the equation for determining the shape of the shock wave in the new variables 

+ 

d~F - - s i n O ( t  - F e ) + e o s O ~  ~0-~ - t d-7- =: J - ~  ~ d ~ ,  (21) 
0 

from which, using (19), we can find Y(x). 

System of equations (16) and equation (21) were computed numerical ly on an electronic computer by the method 
of finite differences. Solutions were obtained for wr = 0.1, 0.5, 1, 10, 100. In the computations it was assumed that 

0 = 40 ~ ~ = 1.4. The correctness of the computations was checked by seeing whether for an" = 0 the solution coincided 
with the results of [1]. The integration step Ax = 0.01. 

Upon halving the step, i . e . ,  for Ax = 0. 005, we found changes in the fourth to fifth places of the quantities corn- 
puted, i . e . ,  Ax = 0.01 gave sufficient accuracy. 

We shall estimate the order of the quantities entering into (21) with respect to w~,,. From (21) we have 

E~-- -o~ ,  /~co~, w~r for ~I. 

The order of the remaining quantities does not change and is given by the estimates made for wv "" 1. Thus, in 

the l imi t  as w r  ~ 0 we have the solution obtained in [1]. Now let an" >> 1, then 

t 1 
O~'g ~ ~ ' g  " 

The  order of the remaining quantities does not change and is given by the estimates made for the case coy ~ 1. 

When art >> 1 the equations of system (21) assume a simpler form. 

u ] 1 

-~os o 0.05 

We shall put E x = wrEi, where E~ " 1. Then 

Ou a . Op 2 q e  ~ Ex '~  
u ~  = - - - 6 1 , ,  o-7 = - - - 3 - -  e - g  - 

Y 
/ ,  E '  I [dtb 

- - - - -  ~ , E 2 = - V  .~ --6- , i x = 0 ,  w = 0 .  
0 

(22) 

When an" --* ~o system (16) has a l imit  solution satisfying system (22). 

If the electric field E* = E + V x H is perpendicular to the magnetic  field 

(in our case this condition is fulfilled), then from Eq. (1) we can obtain [2]: 

Fig. 2 J = 1 + ~  (E* ---~-c~ E* x H)  (23) 

in the dimensionless variables introduced above. In (23) the second term on the right is the current perpendicular both to 
E* and to H, the so-cal led Hall current. The projections of this current j* on the coordinate axes will be 

i + O ~  H ' A * =  i + c o ~  ~ ' /u* = O, A* = l + ~ [ w - - E x ] "  

Near the wall of the wedge, where the velocity u is small, the component of the Hall current along the x axis will 

be small, and the main contribution to Jx will be made by the component of the direct current along the x axis, i . e . ,  
the current parallel  to E*, as may be seen from Eq. (28). As we move away from the wall of the wedge, the velocity 

component u increases: the components of the Hall current and the direct current along the x axis have the same sign. 

The projection of the total current on the x axis with respect to a section x = const passes through zero and changes sign 

(as confirmed by the numerical  results presented in Fig. 2 in the form of graphs of the function i x =  ix(Y) for x = 0 .4  and 

different art); therefore there is no total current in the direction of the x axis. On the basis of the Hall current we also 
obtained the estimates: 
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Jx ~ 1 / w r ,  Jz ~ 1 for act >> 1, 

Jx ~ 1, Jz ~ 1 for aTr ~ 1, 

Jx ~ coT, Jz ~ 1 for cot << 1. 

The  results obtained conf i rm the es t imates  of orders of  magni tude  in re la t ion to car. 

Figures 3 and 4 g ive  the numer i ca l  results for Jx (x) and w (x), respec t ive ly ,  
for y = 0 and different  coT. These show that  the transverse ve loc i ty  component  

w. appear ing when co-r ~ 0, increases with increase in coT, reaches a m a x i m u m ,  

and then starts to dec l ine .  Even at wr = 100 the values of Jx and w are neg l i -  
gibly small .  

No e l ec t r i c  current  flows in the di rect ion of  the x axis, therefore  we get  

an e l ec t r i c  f ield E x = Ex(X ). In Fig. 4 the broken l ine shows the dependence  of 

0. 1Ex/cOr on x for different  co'r, which confirms the conclusion that  E x ~ car. 

In [1] it was shown that  when a magne t i c  f ield is exc i ted  inside bodies 

p laced  in a hypersonic flow the flow may  separate  from the body. This is a t -  

t r ibutable  to the ac t ion  of  ponderomot ive  forces in a d i rec t ion  opposed to the 

motion.  The region beyond the separat ion point is the separat ion zone of vor-  
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rex flow. Calcu la t ions  for the case  car ~ 0 have  shown that  with increase in cor the coordinate  x,  of the separat ion point 

is displaced upwards with respect  to the flow. With increase in cot the quant i ty  Jz increases, as may  be seen from the 

equat ion  for Jz of  system (16) and conf i rmed by the  numer i ca l  results for y = 0 presented in Fig. 5. The  increasing pon- 

de romot ive  force causes more  rapid dece le ra t ion  of  the flow. Figure 6 shows the  numer i ca l  results for u at the wal l  of  the 

wedge in re la t ion  to various cur. Here are several  values of  x:, as a function of  cot for ,a= 1.4:  

~)T---- 0, 0.1, 0.5, 1, t0, t 0 0 ,  
x .  = 1 ,  0.995, 0.855, 0.72, 0.59, 0.59 . 

The results of  the computa t ions  conf i rmed the conclusions made  on the basis of an analysis of  system (1~), that 

for large  car the fiow in the region of  perturbat ion tends to a cer ta in  I imi t ing  flow. This is shown by ca lcu la t ions  for 

cur = 10 and cot = 100. 

Figure 1 shows the pattern formed by the l ines of  e l ec t r i c  current.  There  is no current  in the d i rec t ion  of  the x axis, 

but the current l ines must c lose somewhere .  However,  this region is not  embraced  by the computat ions ,  since the main  

role there  is p layed by the componen t  jy, and from the es t imates  made  for the case cot N 1 it is c lear  that  jy " a. 

From this study of  the in f luence  of  the Hal l  e f fec t  on hypersonic  flow past a wedge,  from inside which a magne t i c  

f ie ld  is exc i ted ,  we may  conc lude  that  for our probiem the Hal l  e f fec t  intensif ies tile magne tohydrodynamic  ac t ion  of  

the f ie ld  on the flow, This is a result of  the speci f ic  features of  the flow (geometry ,  absence of  current flow in the d i r ec -  

t ion of  the x axis). 

The author wishes to thank M. D. Ladyzhenski i  for formula t ing  the problem and discussing the progress of the work. 
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