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This paper deals with the problem of the steady-state hypersonic flow of an inviscid compressible gas past

a wedge. Inside the wedge a magnetic field is excited in a direction perpendicular to the generator. The
flow in the region of perturbation is investigated on the basis of the ordinary equations of magnetohydro-
dynamics and Ohm's law, written for the case where the Hall effect is taken into account. The system of
equations obtained has been solved numerically on a computer by the method of finite differences. The
results show that for the given problem the Hall effect intensifies the magnetchydrodynamic action of the
magnetic field on the flow. M. D. Ladyzhenskii [1] has also studied hypersonic flow past bodies from inside
which a magnetic field is excited. He has investigated the influence of a strong magnetic field on the {low
for the case where the Hall effect is neglected. The object of the present study is to determine the impor-
tance of the Hall effect,

Suppose a wedge is exposed to the steady-state hypersonic flow of an inviscid compressible gas. Inside the wedge a
magnetic field is excited, The field vector is perpendicular to the generator of the wedge and has a constant modulus H¥.
Electrical conduction in the undisturbed flow is neglected. In the region beyond the shock wave the equations of nay-
netohydrodynamics hold true, and, since we are considering the case in which wr = 0. where w is the gyrofrequency of
the electrons in the magnetic field, and 7 is the average time between electron-ion collisions. we shall take Ohm’s law
in the form [2]:

j=oo(E++VxH)—2TjxH )

where o, is the conductivity in the absence of a magnetic field (assumed constant); H, E are the magnetic and electric
field vectors. respectively; c is the speed of light in a vacuumy V is the gas velocity; and j is the current density vector.

We shall relate the velocity in the region of perturbation to the velocity of the undisturbed flow V .. the intensity
of the magnetic field to the quantity H* the density to the density at infinity p,,, the current density to the quantity
0¢V o H¥/c. the electric field intensity to the quantity V,H*/c, the pressure to twice the velocity head in the undisturbed
flow po, Ve and the space coordinates to the length of the generator of the wedge L. In dimensionless variables the equa-
tions of magnetohydrodynamics and Ohm's law may be written thus:
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where V, H, p, and p are, respectively, the velocity vector, magnetic field strength vector, density, and pressure, all
in dimensionless form, and % is the ratio of specific heats.

Equations (2) contain the dimensionless quantities q and Ry, Their order of magnitude was estimated in {1]. Here
we shall consider the cases Ry ~ 1, g~ 1/e, where € = (v — 1)/(n + 1) is the ratio of the density in front of the shock
wave.

To equations (2) we must add the conditions at the shock wave and the boundary conditions at the body and at in-~
finity. In dimensionless variables. assuming that the Mach number at infinity is infinitely large, the conditions at the
shock wave assume the form:
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where the subscript 2 relates to the region beyond the shock wave, T and n are, respectively, unit vectors of the tangent
and normal to the shock wave, and B is the local angle of inclination of the discontinuity with respect to the direction of
the velocity in the undisturbed flow. At the body we have the no-flow condition Vy; = 0. In the undisturbed flow the fol-
lowing equations hold for the magnetic field:
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divH=0, rot H=0.
Equations (2) and (3) constitute the complete system of equations of the problem. The shape of the shock wave is
determined in the process of its solution.

We project Egs. (2) onto the axes of the Cartesian coordinate system x. y, z. which we shall select as follows:
the origin is located at the nose of the wedge. the x axis is directed along the generator, and the y axis at right angles
to it. By virtue of the formulation of the problem, all the functions in question are functions only of x and y and do not
depend on z. The components of V along the axes x, y, z will be denoted by u, v, and w, respectively. We then get:
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From Eqs. (11) we find that E; = 0, since it is assumed that there is no external electric field.

From the equations of magnetohydrodynamics it follows that the equation
div j = 0 is everywhere fulfilled or, in accordance with Gauss' theorem,

{ jndZ =0
o

where 2 is some closed surface, and j; is the current density component normal
to the surface. Since in our problem nothing depends on z, we shall take as the
surface Z a piece of the surface (the intersection of which with the plane z =0
is shown in Fig. 1) lying between the planesz=0andz =1 E£=Z;+ Ly + 3.

Note that at the surface of the wedge jn =0, as follows from the formula -
tion of the problem. In front of the shock wave the gas is nonconducting, i.e.,
there are no currents from the shock wave; therefore we have, in turn:
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Thus, from the formulation of the problem it follows that no electric current
flows in the direction of the x axis.

Fig. 1
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Assuming that the parameter ¢ = (0 — 1)/(» + 1) is small. we shall estimatc the quantities entering into cquations
{(4)-(11) for the case wr ~ 1. By analogy with [1], we have:
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Further, from Eas. (5). (8). (6). (9). and (10), (11) we have, respectively:
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All these estimates, obtained for the case wr ~ 1, are confirmed by the solution.

Neglecting in Eqs. (4)-(11) terms of the order of ¢ in comparison with 1 and using (12), we obtain:
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where Y = Y(x) is the equation of the shock wave. The last equation in system (14) is obtained from Egs. (12). (13) and
the equation for jy of system (14).

At the shock wave from (3) we have
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where 6 is the half-angle of the wedge. We shall go over to the new variables x and ¢, determining ¢ as follows:
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System (16) describes the gas flow in the region of perturbation beyond the shock wave and determines the eleciric
currents and the electric field in this region. We shall find the shape of the shock wave. From the continuity equation in

the variables x and ¢ we have:
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From boundary conditions (15) we have:
vz=‘£cosﬂ——ssin8. (18)

dx

Using the expression ¢ = —x sin 0 —y cos 0 for the current function in the undisturbed flow. taking continuity at the shock
wave into account. we get:

Y = —2sin0—Y cosh. (1)



From (18) and (19) we find:
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Substituting (20) in (17), we find the equation for determining the shape of the shock wave in the new variablcs
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from which, using (19), we can find Y (x).

System of equations (16) and equation (21) were computed numerically on an electronic computer by the mecthod
of finite differences. Solutions were obtained for wr = 0,1, 0.5, 1, 10, 100, In the computations it was assumed that
U=40° w= 1,4 The correctness of the computations was checked by seeing whether for wr = 0 the solution coincided
with the results of [1]. The integration step Ax = 0. 01,

Upon halving the step. i.e.. for Ax = 0.005, we found changes in the fourth to fifth places of the quantities com -
puted, i.e.. Ax = 0.01 gave sufficient accuracy.

We shall estimate the order of the quantities entering into (21) with respect to wr., .From (21) we have

Ex~ot, ji~ot, w~0T for or<g1l.

The order of the remaining quantities does not change and is given by the estimates made for wr ~ 1. Thus. in
the limit as wr — 0 we have the solution obtained in [1]. Now let wr > 1, then
1
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The order of the remaining quantities does not change and is given by the estimates made for the case wr ~ 1.
When wr > 1 the equations of system (21) assume a simpler form.

We shall put Ey = wrEy, where Ex ~ 1. Then
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/ When wr -> « system (16) has a limit solution satisfying system (22).
// L ) If the electric field B* = E + V x H is perpendicular to the magnetic field
SRR/ w01 Jz (in our case this condition is fulfilled), then from Eq. (1) we can obtain [2]:
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in the dimensionless variables introduced above. In (23) the second term on the right is the current perpendicular both to
E* and to H, the so-called Hall cuirent. The projections of this current j* on the coordinate axes will be
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Near the wall of the wedge, where the velocity u is small, the component of the Hall current along the x axis will
be small, and the main contribution to jy will be made by the component of the direct current along the x axis, i.e.,
the current parallel to E¥, as may be seen from Eq. (23). As we move away from the wall of the wedge, the velocity
component u increases: the components of the Hall cuirent and the direct current elong the x axis have the same sign.
The projection of the total current on the x axis with respect to a section x = const passes through zero and changes sign
(as confirmed by the numerical results presented in Fig. 2 in the form of graphs of the function jx‘= jx(y) for x =0.4 and
different wr); therefore there is no total current in the direction of the x axis, On the basis of the Hall current we also

obtained the estimates:
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ix ~ Ywr, jp~1 for wr»1,
x~ 1 jz ~ 1 for wr ~ 1,
ix ~ wr, jp ~ 1 for wr «<1.

The resuits obtained confirm the estimates of orders of magnitude in relation to wr.

Figures 3 and 4 give the numericalresults for jy(x)and w(x), respectively, ~01—
for y = 0 and different wr. These show that the transverse velocity component Iz wel 05 j
w. appearing when wr = 0, increaseswith increase in wr, reaches a maximum,
and then starts to decline. Even at wr = 100 the values of j, and w are negli-
gibly small.

~005 /

No electric current flows in the direction of the x axis. therefore we get
an electric field Ey = E4(x). In Fig. 4 the broken line shows the dependence of / A0 }
0. 1Ey/wr on x for different wr, which confirms the conclusion that Ex ~ wr. / =

In [1] it was shown that when a magnetic field is excited inside bodies ///00 z
placed in a hypersonic flow the flow may separate from the body. This is at- 0 05 1
tributable to the action of ponderomotive forces in a direction opposed to the
motion. The region beyond the separation point is the separation zone of vor- Fig. 3.
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tex flow. Calculations for the case wr # 0 have shown that with increase in wr the coordinate x, of the separation point
is displaced upwards with respect to the flow. With increase in wr the quantity j, increases. as may be seen from the
equation for jz of system (16) and confirmed by the numerical results for y = 0 presented in Fig. 5. The increasing pon-
deromotive force causes more rapid deceleration of the flow. Figure 6 shows the numerical results for u at the wall of the
wedge in relation to various wr. Here are several values of x, as a function of wr for n= 1. 4:

or=0, 0.1, 0.5, 1, 10, 100,
z, =1, 0995 0855 0.72, 0.59, 0.59 .

The results of the computations confirmed the conclusions made on the basis of an analysis of system (16), that
for large wr the flow in the region of perturbation tends to a certain limiting flow. This is shown by calculations for

wr = 10 and wr = 100.
Figure 1 shows the pattern formed by the lines of electric current. There is no current in the direction of the x axis,

but the current lines must close somewhere. However, this region is not embraced by the computations. since the main
role there is played by the component jy’ and from the estimates made for the case wr ~ 1 it is clear that jy ~E.

From this study of the influence of the Hall effect on hypersonic flow past a wedge. from inside which a magnetic
field is excited, we may conclude that for our problem the Hall effect intensifies the magnetohydrodynamic action of
the field on the flow. This is a result of the specific features of the flow (geometry, abscnce of current flow in the direc-

tion of the x axis).

The author wishes to thank M. D. Ladyzhenskii for formulating the problem and discussing the progress of the work.
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